3.262 \(\int \frac {\sqrt {\sec (c+d x)}}{(a+a \sec (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=137 \[ \frac {19 \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {9 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{16 a d (a \sec (c+d x)+a)^{3/2}}-\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}} \]

[Out]

-1/4*sec(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(5/2)-9/16*sec(d*x+c)^(3/2)*sin(d*x+c)/a/d/(a+a*sec(d*x+c)
)^(3/2)+19/32*arctanh(1/2*sin(d*x+c)*a^(1/2)*sec(d*x+c)^(1/2)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))/a^(5/2)/d*2^(1/2
)

________________________________________________________________________________________

Rubi [A]  time = 0.24, antiderivative size = 137, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {3817, 4012, 3808, 206} \[ \frac {19 \tanh ^{-1}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {9 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{16 a d (a \sec (c+d x)+a)^{3/2}}-\frac {\sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Sec[c + d*x]]/(a + a*Sec[c + d*x])^(5/2),x]

[Out]

(19*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(16*Sqrt[2]*a^(5/2)
*d) - (Sec[c + d*x]^(3/2)*Sin[c + d*x])/(4*d*(a + a*Sec[c + d*x])^(5/2)) - (9*Sec[c + d*x]^(3/2)*Sin[c + d*x])
/(16*a*d*(a + a*Sec[c + d*x])^(3/2))

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3808

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b*d)
/(a*f), Subst[Int[1/(2*b - d*x^2), x], x, (b*Cot[e + f*x])/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]])], x
] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 3817

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(Cot[
e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(f*(2*m + 1)), x] + Dist[1/(a^2*(2*m + 1)), Int[(a + b*Csc
[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*(a*(2*m + n + 1) - b*(m + n + 1)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, d
, e, f, n}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && (IntegersQ[2*m, 2*n] || IntegerQ[m])

Rule 4012

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> -Simp[((A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(b*f*(2
*m + 1)), x] + Dist[(a*A*m + b*B*(m + 1))/(a^2*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n
, x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0]
&& LeQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\sqrt {\sec (c+d x)}}{(a+a \sec (c+d x))^{5/2}} \, dx &=-\frac {\sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {\int \frac {\sqrt {\sec (c+d x)} \left (-\frac {7 a}{2}+a \sec (c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx}{4 a^2}\\ &=-\frac {\sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {9 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}+\frac {19 \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+a \sec (c+d x)}} \, dx}{32 a^2}\\ &=-\frac {\sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {9 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}-\frac {19 \operatorname {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{16 a^2 d}\\ &=\frac {19 \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {\sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {9 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.00, size = 146, normalized size = 1.07 \[ \frac {-\sin (c+d x) (13 \cos (c+d x)+9) \sqrt {1-\sec (c+d x)} \sec ^{\frac {5}{2}}(c+d x)-76 \sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right ) \cos ^5\left (\frac {1}{2} (c+d x)\right ) \sec ^3(c+d x) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right )}{16 d \sqrt {1-\sec (c+d x)} (a (\sec (c+d x)+1))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Sec[c + d*x]]/(a + a*Sec[c + d*x])^(5/2),x]

[Out]

(-76*Sqrt[2]*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]]*Cos[(c + d*x)/2]^5*Sec[c + d*x]^3*Sin
[(c + d*x)/2] - (9 + 13*Cos[c + d*x])*Sqrt[1 - Sec[c + d*x]]*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(16*d*Sqrt[1 - S
ec[c + d*x]]*(a*(1 + Sec[c + d*x]))^(5/2))

________________________________________________________________________________________

fricas [A]  time = 1.05, size = 426, normalized size = 3.11 \[ \left [\frac {19 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - \frac {4 \, {\left (13 \, \cos \left (d x + c\right )^{2} + 9 \, \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{64 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}, -\frac {19 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )}}{a \sin \left (d x + c\right )}\right ) + \frac {2 \, {\left (13 \, \cos \left (d x + c\right )^{2} + 9 \, \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{32 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

[1/64*(19*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*sqrt(a)*log(-(a*cos(d*x + c)^2 - 2*
sqrt(2)*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - 2*a*cos(d*x + c) - 3
*a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) - 4*(13*cos(d*x + c)^2 + 9*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/
cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*
x + c) + a^3*d), -1/32*(19*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*sqrt(-a)*arctan(sq
rt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))/(a*sin(d*x + c))) + 2*(13*cos(d*x +
c)^2 + 9*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^3*d*cos(d*x
 + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\sec \left (d x + c\right )}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate(sqrt(sec(d*x + c))/(a*sec(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

maple [A]  time = 1.34, size = 208, normalized size = 1.52 \[ \frac {\sqrt {\frac {1}{\cos \left (d x +c \right )}}\, \sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \cos \left (d x +c \right ) \left (-1+\cos \left (d x +c \right )\right )^{2} \left (13 \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (\cos ^{2}\left (d x +c \right )\right )+19 \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) \cos \left (d x +c \right ) \sin \left (d x +c \right )-4 \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right )+19 \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}}{2}\right ) \sin \left (d x +c \right )-9 \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\right )}{16 d \sin \left (d x +c \right )^{5} \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, a^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(5/2),x)

[Out]

1/16/d*(1/cos(d*x+c))^(1/2)*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*cos(d*x+c)*(-1+cos(d*x+c))^2*(13*(-2/(1+cos(d*
x+c)))^(1/2)*cos(d*x+c)^2+19*arctan(1/2*sin(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2))*cos(d*x+c)*sin(d*x+c)-4*(-2/(1+c
os(d*x+c)))^(1/2)*cos(d*x+c)+19*arctan(1/2*sin(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2))*sin(d*x+c)-9*(-2/(1+cos(d*x+c
)))^(1/2))/sin(d*x+c)^5/(-2/(1+cos(d*x+c)))^(1/2)/a^3

________________________________________________________________________________________

maxima [B]  time = 1.06, size = 3049, normalized size = 22.26 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

1/32*(19*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x
+ 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(4*d*x + 4*c)^2 + 304*(log(cos(1/2*d*x +
 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x +
1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(3*d*x + 3*c)^2 + 684*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1
/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x +
1/2*c) + 1))*cos(2*d*x + 2*c)^2 + 304*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1
/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(d*x + c)^2
 + 19*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1
/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(4*d*x + 4*c)^2 + 304*(log(cos(1/2*d*x + 1/
2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2
*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(3*d*x + 3*c)^2 + 684*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*
c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2
*c) + 1))*sin(2*d*x + 2*c)^2 + 304*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*
c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(d*x + c)^2 +
2*(76*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1
/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(3*d*x + 3*c) + 114*(log(cos(1/2*d*x + 1/2*
c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c
)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(2*d*x + 2*c) + 76*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2
+ 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) +
 1))*cos(d*x + c) + 19*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 19*
log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) - 26*sin(7/2*d*x + 7/2*c) -
10*sin(5/2*d*x + 5/2*c) + 10*sin(3/2*d*x + 3/2*c) + 26*sin(1/2*d*x + 1/2*c))*cos(4*d*x + 4*c) + 104*(2*sin(3*d
*x + 3*c) + 3*sin(2*d*x + 2*c) + 2*sin(d*x + c))*cos(7/2*d*x + 7/2*c) + 8*(114*(log(cos(1/2*d*x + 1/2*c)^2 + s
in(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*
sin(1/2*d*x + 1/2*c) + 1))*cos(2*d*x + 2*c) + 76*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(
1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos
(d*x + c) + 19*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 19*log(cos(
1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) - 10*sin(5/2*d*x + 5/2*c) + 10*sin(3
/2*d*x + 3/2*c) + 26*sin(1/2*d*x + 1/2*c))*cos(3*d*x + 3*c) + 40*(3*sin(2*d*x + 2*c) + 2*sin(d*x + c))*cos(5/2
*d*x + 5/2*c) + 12*(76*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - lo
g(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(d*x + c) + 19*log(cos(1/2
*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 19*log(cos(1/2*d*x + 1/2*c)^2 + sin(1
/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) + 10*sin(3/2*d*x + 3/2*c) + 26*sin(1/2*d*x + 1/2*c))*cos(2*d*x
 + 2*c) + 8*(19*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 19*log(cos
(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1) + 26*sin(1/2*d*x + 1/2*c))*cos(d*x
+ c) + 4*(38*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*
d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(3*d*x + 3*c) + 57*(log(cos(1/2*d*x
+ 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x +
 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(2*d*x + 2*c) + 38*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2
*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/
2*c) + 1))*sin(d*x + c) + 13*cos(7/2*d*x + 7/2*c) + 5*cos(5/2*d*x + 5/2*c) - 5*cos(3/2*d*x + 3/2*c) - 13*cos(1
/2*d*x + 1/2*c))*sin(4*d*x + 4*c) - 52*(4*cos(3*d*x + 3*c) + 6*cos(2*d*x + 2*c) + 4*cos(d*x + c) + 1)*sin(7/2*
d*x + 7/2*c) + 16*(57*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log
(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(2*d*x + 2*c) + 38*(log(cos
(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(
1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(d*x + c) + 5*cos(5/2*d*x + 5/2*c) - 5*cos(3/2*d*x + 3/2*
c) - 13*cos(1/2*d*x + 1/2*c))*sin(3*d*x + 3*c) - 20*(6*cos(2*d*x + 2*c) + 4*cos(d*x + c) + 1)*sin(5/2*d*x + 5/
2*c) + 24*(38*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2
*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(d*x + c) - 5*cos(3/2*d*x + 3/2*c)
- 13*cos(1/2*d*x + 1/2*c))*sin(2*d*x + 2*c) + 20*(4*cos(d*x + c) + 1)*sin(3/2*d*x + 3/2*c) - 80*cos(3/2*d*x +
3/2*c)*sin(d*x + c) - 208*cos(1/2*d*x + 1/2*c)*sin(d*x + c) + 19*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/
2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - 19*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x
+ 1/2*c) + 1) + 52*sin(1/2*d*x + 1/2*c))/((sqrt(2)*a^2*cos(4*d*x + 4*c)^2 + 16*sqrt(2)*a^2*cos(3*d*x + 3*c)^2
+ 36*sqrt(2)*a^2*cos(2*d*x + 2*c)^2 + 16*sqrt(2)*a^2*cos(d*x + c)^2 + sqrt(2)*a^2*sin(4*d*x + 4*c)^2 + 16*sqrt
(2)*a^2*sin(3*d*x + 3*c)^2 + 36*sqrt(2)*a^2*sin(2*d*x + 2*c)^2 + 48*sqrt(2)*a^2*sin(2*d*x + 2*c)*sin(d*x + c)
+ 16*sqrt(2)*a^2*sin(d*x + c)^2 + 8*sqrt(2)*a^2*cos(d*x + c) + sqrt(2)*a^2 + 2*(4*sqrt(2)*a^2*cos(3*d*x + 3*c)
 + 6*sqrt(2)*a^2*cos(2*d*x + 2*c) + 4*sqrt(2)*a^2*cos(d*x + c) + sqrt(2)*a^2)*cos(4*d*x + 4*c) + 8*(6*sqrt(2)*
a^2*cos(2*d*x + 2*c) + 4*sqrt(2)*a^2*cos(d*x + c) + sqrt(2)*a^2)*cos(3*d*x + 3*c) + 12*(4*sqrt(2)*a^2*cos(d*x
+ c) + sqrt(2)*a^2)*cos(2*d*x + 2*c) + 4*(2*sqrt(2)*a^2*sin(3*d*x + 3*c) + 3*sqrt(2)*a^2*sin(2*d*x + 2*c) + 2*
sqrt(2)*a^2*sin(d*x + c))*sin(4*d*x + 4*c) + 16*(3*sqrt(2)*a^2*sin(2*d*x + 2*c) + 2*sqrt(2)*a^2*sin(d*x + c))*
sin(3*d*x + 3*c))*sqrt(a)*d)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1/cos(c + d*x))^(1/2)/(a + a/cos(c + d*x))^(5/2),x)

[Out]

int((1/cos(c + d*x))^(1/2)/(a + a/cos(c + d*x))^(5/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {\sec {\left (c + d x \right )}}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {5}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(1/2)/(a+a*sec(d*x+c))**(5/2),x)

[Out]

Integral(sqrt(sec(c + d*x))/(a*(sec(c + d*x) + 1))**(5/2), x)

________________________________________________________________________________________